9-cis-retinoic acid: effects on normal and leukemic hematopoiesis in vitro.
نویسندگان
چکیده
Retinoic acid exhibits effects on the proliferation and differentiation of many hematopoietic cells. Cellular responsiveness to retinoic acid (RA) is conferred through two distinct classes of nuclear receptors, the RA receptors (RARs) and the retinoid X receptors (RXRs). The RARs bind to both 9-cis- and all-trans-RAs, but 9-cis-RA alone directly binds and activates RXR. This suggested that 9-cis-RA could have expanded hematopoietic activities as compared with all-trans-RA. We compared the abilities of 9-cis- and all-trans-RAs to induce differentiation and inhibit proliferation of three acute myelogenous leukemia (AML) cell lines and fresh leukemic cells from 28 patients and found that: (1) 9-cis-RA in general was more potent than all-trans-RA in suppressing the clonal growth of two AML cell lines and 17 AML samples from patients, including four from individuals with acute promyelocytic leukemia (APL). Eleven leukemic samples, including three from patients with chronic myelogenous or chronic myelomonocytic leukemia, were relatively refractory to both retinoids. (2) The range of activities of both retinoids was similar except that the clonal growth of samples from three AML patients were inhibited by 9-cis-RA, but not by all-trans-RA. (3) Both retinoids inhibited the clonal proliferation of leukemia cells without necessarily inducing their differentiation; in fact, the only fresh AML cells that were able to undergo differentiation were from patients with APL and one individual with M2 AML. (4) Both retinoids enhanced myeloid and erythroid clonal growth from normal individuals, and 9-cis-RA showed slightly more stimulation of the myeloid clonal growth than did the all-trans-RA. Our study suggests that 9-cis-RA is worthy of further study for the treatment of selected individuals with AML.
منابع مشابه
Retinoids (all-trans and 9-cis retinoic acid) stimulate production of macrophage colony-stimulating factor and granulocyte-macrophage colony-stimulating factor by human bone marrow stromal cells.
Retinoic acids (RAs) exert pleiotropic effects on cellular growth and differentiation. All-trans retinoic acid (ATRA) and 9-cis retinoic acid (9-cis RA), a stereoisomer of ATRA, induce differentiation of leukemic cell lines and cells from patients with acute myelogenous leukemia (AML) in vitro. Despite information on the effects of RAs on hematopoietic cells, little is known about how RAs act o...
متن کاملEffects of novel retinoic acid compound, 9-cis-retinoic acid, on proliferation, differentiation, and expression of retinoic acid receptor-alpha and retinoid X receptor-alpha RNA by HL-60 cells.
Retinoic acid modulates proliferation and differentiation of a wide variety of normal and leukemic cells through two distinct families of transcriptional factors: the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs). A stereoisomer of retinoic acid, 9-cis-retinoic acid, is a high-affinity ligand for RXR and binds efficiently to RAR. In contrast, all-trans-retinoic acid interac...
متن کاملRetinoids. Structure-function relationship in normal and leukemic hematopoiesis in vitro.
Retinoids were studied both to identify what skeletal components are important in the modulation of normal and leukemic human myeloid clonal proliferation and differentiation in vitro and to elucidate the mechanism by which retinoids modulate proliferation of hematopoietic cells. Retinoids with a derivatized terminal carboxyl group were significantly less active than all-trans-retinoic acid, an...
متن کاملEffects of Novel Retinoic Acid Compound, 9-cis-Retinoic Acid, on Proliferation, Differentiation, and Expression of Retinoic Acid Receptor-a
Retinoic acid modulates proliferation and differentiation of a wide variety of normal and leukemic cells through two distinct families of transcriptional factors: the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs). A stereoisomer of retinoic acid, 9-cis-retinoic acid, is a highaffinity ligand for RXR and binds efficiently to RAR. In contrast, all-trans-retinoic acid interact...
متن کامل9-cis-Retinoic Acid and 1,25-dihydroxy Vitamin D3 Improve the Differentiation of Neural Stem Cells into Oligodendrocytes through the Inhibition of the Notch and Wnt Signaling Pathways
Background: Differentiating oligodendrocyte precursor cells (OPCs) into oligodendrocytes could be improved by inhibiting signaling pathways such as Wnt and Notch. 9-cis-retinoic acid (9-cis-RA) and 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) can ameliorate oligodendrogenesis. We investigated whether they could increase oligodendrogenesis by inhibiting the Wnt and Notch signaling pathways.Methods: Co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 81 4 شماره
صفحات -
تاریخ انتشار 1993